If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10^2-n^2-16=0
We add all the numbers together, and all the variables
-1n^2+84=0
a = -1; b = 0; c = +84;
Δ = b2-4ac
Δ = 02-4·(-1)·84
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*-1}=\frac{0-4\sqrt{21}}{-2} =-\frac{4\sqrt{21}}{-2} =-\frac{2\sqrt{21}}{-1} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*-1}=\frac{0+4\sqrt{21}}{-2} =\frac{4\sqrt{21}}{-2} =\frac{2\sqrt{21}}{-1} $
| -143=n-27 | | 30/6=n/9 | | 2y+5=-9(y+8) | | 10^2-n^2=16 | | 600/12.5=n/141 | | 4=y+2;2,3,4 | | 0x+6=4x+8 | | -27=x/5 | | 5x^2=60x | | 2p^2-p^2+4p=0 | | P=10+3m | | a^2+3=7 | | 9/(x-8)=6 | | N^2+2n-33=2 | | X+5x=7x+5 | | 120=2x/30 | | N^2-5n-12=-6 | | 7+4x=64-10x | | X+8+2=6+5x | | 20x+Y=240 | | 1-y=20 | | 5x-1/2=47 | | 27=-6(n-5)-(3-n) | | -7=-3x+3x | | 6+18=6x+13 | | 3a-7+4a=7 | | 9(2t-5)=-99 | | x+39=3(4x-28) | | a^2+3a-a-63=0 | | 5x-19=12x+15 | | -5(3k-6)-(5+6k)=46 | | 5-2(x-3)=17 |